
Statically Checking Python
Code

Nat Knight, May 2018

I’m Nat, I do bioinformatics at the BC CfE

1

What to expect

I will talk about:
My experience with typed Python

What I’ve found it useful/not
useful for

Comparisons to other typed
languages

I will not talk about:
Details of the type system

How to be more like Haskell

Monads

2

Python’s type annotations:

Are applied to function arguments and return values

Don’t do anything at run-time

Can be checked by type checkers (e.g. mypy)

3

def add(x: int, y:int) -> int:
…

Add takes two integers and returns an integer.

4

class User(object):
…

def fetch_user(user_id: int) -> User:
…

Fetch_user takes a user id and returns an instance of the user-defined class User.

5

import typing

def sum(numbers: typing.List[int]) -> int:
…

Sum takes a list of integers and returns an integer.

Pretty straightforward.

6

import typing

def save(arg: typing.Union[int, str]) -> None:
…

Save takes either an integer or a string and returns nothing.

Not totally clear what’s going on; types aren’t everything.

7

import typing

T = typing.TypeVar("T")

def batches(xs: typing.Iterator[T]) -> typing.List[T]:
…

New Idea: type variables (generics, type parameters)

Batches splits an iterator into lists.

Iterator and lists are homogeneous (all items have same type).

8

The mypy type checker is:

Static (doesn’t run your code)

Incremental (mix annotated and un-annotated code)

Configurable (tune strictness to your needs)

A lot like a linter (pylint, flake8, etc.)

Static:
- highly dynamic code (e.g. Django ORM) can confuse it
- Requires some annotation to work

Incremental:
- Adding type annotation is “extra work”
- Need to use judgement, decide when returns are diminishing
- Can co-exist in “legacy” codebases
- Can be non-obvious when code is being checked

9

Good Use: Verified Documentation

def register(u: User) -> None:
…

def register(user_name: str) -> RegistrationOutcome:
…

def register(
account_id: typing.Union[str, uuid.UUID]):
…

Can know about these functions without reading their bodies.

Unlike docstrings, these can be checked automatically.

10

Good Use: Design Thinking Tool

def process_trn(arg: typing.Union[int, str, TrnId]):
…

def fetch_user(
user_id: uuid.UUID) -> typing.Optional[User]:
…

def parse_message(input: typing.Any) -> Message:
…

process_trn:
- Very polymorphic, no return value
- Possible candidate for a re-factor: what happens if a transaction fails?
- Possibly confusing semantics.
- Bad name, too.

fetch_user:
- user_id is *only* a UUID, and returns either a user or None.
- Easy to track which functions are “reliable” and which ones may fail.

parse_message:
- Takes in unstructured data and returns parsed data.
- Probably an important piece of code that should be thoroughly tested.

11

Bad Use: Replacing Tests

def add(x: int, y: int) -> int:
return x - y

def main():
add("not a number", None)
No error. `main` isn't checked

Types a poor replacement for tests:
- Some code isn’t checked
- Types may not capture behaviour

12

Different kinds of type system:

Elm/Haskell/Scala/Rust etc.

Part of compilation, mandatory
part of execution

Provides strict, semantically
consistent guarantees

Flexible, expressive, modern
features

mypy

Optional, separate from execution

Provides ad-hoc, inconsistent
guarantees

Flexible, expressive, modern
features

With stricter type systems:
- can’t run code that’s not checked
- must devise types for every part of every program
- gain assurance for your trouble
- While different, Python checker is very capable

13

In summary:

• Python can have static types now, but it’s not Haskell
• Types make good design tools and checkable documentation, but

aren’t a replacement for tests

14

Further Reading:

• mypy docs
• Łukasz Langa: Gradual Typing of Production Applications
• Static types in Python, oh my(py)!

15

The End
Questions?

16

